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W LAY

STABILITY IN NEUTRAL EQUATIONS

by

Jack K. Hale and Pedro Martinez-Amores

Abstract

: Coupled systems of differential-difference and ordinary
difference equaticns occur in various applications including the
theory of transmission‘lines [1] and gas dynamics [2]. Stability
of linear systems has been discussed by Brayton [1] using Laplace
transform and the problem of absolute stability by Rasvan [12]
using the frequency domain method of Popov.

In this paper, the same problems are discussed by the
following method. By differentiating the difference equation,
one obtains a system of neutral differential-difference equations.
The desired solutions of the original problem are obtained by
restricting the initial data to lie on certain manifolds in the
space of all initial data. In this way, this class of problems
can be treated in a natural manner using the known methods of
neutral equations. Generalizations to arbitrary functional

differential equations is also immediate when this approach is

employed..
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1. Notation and Background

Let R = (-»,®) and let R" be an n-dimensional linear
vector space with norm |-|. For r > 0, let C = c([-r,0],R")
be the space of continuous functions mapping [-r,0] into R?
with the tcpology of uniform convergence. The norm in C will

also be designated by |¢]| = sup [¢(8)]|, ¢ € C. Suppose D,L
~r<0<0

are bounded linear operators from C to Rn,

0
H¢ (0) - J [du(6)]¢(8)
0 =Y
J [dn(8)1¢(6)
=Y

D(¢9)
(1.1)

il

L(¢)

where H is an n X n matrix, det H # 0, p,n are n X n matrix
functions of bounded variation on [-r,0] with p nonatomic at
zero. This latter hypothesis is equivalent to the existence of a
continuous, nondecreasing function y: [0,r] - R such that

v(0) = 0 and

Hostdu(e)m.e) i < y(e) o]
’
for € ¢ [0,xr], ¢ £ C. . -
If x is a function from [o-r,») to Rn, let Xy o
t ¢ [0,0), be the function from [-r,0] to R® defined by
xt(e) = x(t+6), 6 ¢ [-r,0]. An autonomous linear homogeneous

neutral functional differential equation (NFDE) is defined to

be

+ e
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_:ff (1.2) 4 Dx,) = L(x,).
% % A solution x = x(¢) through ¢ e C at t =0 is a
%’ § continuous function taking ([-r,A), A > 0, into R® such that
§ é Xq = ¢, D(xt) is continuously differentiable on [0,A) and
% % equation (1.2) is satisfied on this interval. It follows from
% Hale and Mayer [9] that a solution through ¢ exists on [;r,m),
é is unique and depends continuously in ¢.
If T(t): C+C, £t >0, is defined by T(t)¢ = xt(¢),
then T(t), t > 0 is a strongly continuous semigroup with in-
finitesimal generator A: Z(a) -+ C, A¢(8) = ¢(8), -xr < 8 < O,

and

@) = {4 £C: ¢ € C, Db = Lé}.

The spectrum o(A) of A consists of all A which

satisfy the characteristic equation

0, A(A) = AD(e*" 1) - L(e?"T)

(1.3) det A(A)

0 0
= AH - A J eMay(e) - j e*%an (o).
-r

-

The fundamental matrix solution X(t) of (1.2) is defined

i
L4
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to be the n x n matrix solution of the equation




t
L(X )ds, t 20

D(Xt) = I+J

0

The following results of ILenry [11] will be fundamental

to our investigation.

Lemma 1.1. If Re A < 8§ for all XA satisfying (1.3),

then, for any € > 0, there is a K = K(g¢) such that

(§+e)t

(1.5) lT(t) |, |x()], |X(t)] < Ke , a.e. for t > 0.

Definition l.l. The operator D is said to be stable if there

is a v > 0 such that all roots of the equation

(1.6) det D(e*'I) = 0

satisfy Re A £ -v.
From the results of Cruz aad Hale [4] and Henxy [11], an
operator D 1is stable if and only if the zero solution of the

functional equation

(1.7)
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is uniformly asymptotically stable; that is, there are constants

K, o > 0 such that
(1.8) ly )] < k%o, t 20,4 ¢ecC, D= 0.

If D¢ = H$(0) - J¢(-r), then D is stable if the roots

of the polynomial equation

det [H~-pJ] = 0

" satisfy |p| < 1.

An important property of equation (1.2) when D is stable
is *he following (see [5]): If D is stable, there is a
constant ’aD < 0 such that for any a > ans there are only a
finite number of roots A of (1.3) with Re A > a.

If F,G: R » R® are continuous, a nonhomogeneous linear
NFDE is defined as
(1.9) ac [D(xt) - G(t)] = L(x,) + F(t).

A solution through ¢ at t = ¢ is defined as before
and is known to exist on [o-r,«).

The variation of constants formula for (1.9) (see [8])

states that the solution of (1.9) though (0,¢) is given by

e




t
(1.10) x(t) = T(t-0)¢(0) + J X(t~s)F(s)ds
o

) RN W B (R on

t+
- j [d_X(£-9))IG(s) - G(o)]
)

P T

for t > o, where X is the fundawental matrix solution.

b B Vst b

Another convenient equivalent form for equation (1.10),

is the following:

A B SR R

(1.11) x(t) - X(0)G(t) = T(t=0)¢(0) - X(t-0)G(o0)

i

t t
+ J-X(t—s)F(s)ds - J [dsx(t-s)]G(s), t >o.
o o

Ll

T

R
R

Let us make a few other observations on the variation of
constants formula which suggest'. changes of variables which will
be useful in later sections. Izt PC be the space of functions

taking [-x,0] into R® which are uniformly continuous on

[-x,0) and may be discontinuous at zero. With the matrix XO

A e

as defined before, it is clear that
PC=C+ (xo)
where (xo)

= span {Xo}; that is, any ¢ € PC is given as

Y= ¢+ Xb

whexe ¢ € C, b ¢ R®. We make PC a normed vector space by

defining the norm |[y]| = sup |y(8)].
-xr<6<0
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Let us define xt(w) = T(t)y where ¢ € PC and x(¥)
is the solution of (1.2) through . The operator T(t): PC >
(functions on [-r,0]) is linear, but T(t) does not take
PC »~ PC. The operator T(t) is an extension of the original
semigroup T(t} on C. If we use this notation, then the
variation of constants formulas (1.10), (1.11) can be written

as

t
T(t~0)¢ + I T(t—s)XOF(s)ds
- do

o+

t
+ Io [a_T(t-s)X;1[G(s) = G(0)]

t

XOG(t) = T(t-U){¢—X0G(G)] + J T(t—s)on(s)ds
g

t
Jo[dsT(t—s)XO]G(s)
for t >0, ¢ € C. As usual in the theory of functional differ-
ential equations, these integrals are in Rp; that is, each

integral is evaluated at each 6 ¢ [-r,0] as an integral in R".

Formula (1.13) certainaly suggests the change of variables

(1.14)

X, - XOG(t) =2, ¢ - XOG(G) é ¥

from C » PC. If this is dore, equation (1.13) becomes




t t
{1.15) zt = T(t~0)y + I T(t-s)on(s}ds - J [dsT(t—s)XO]G(s) )
c c

= a formula much simpler than either (1.12) or (1.13). This

ol 1) " ol v e 2

WA iy

remark will play an important role in the subse _1ent discussion.

2. Stability in Nonlinear Equations

In this section, we give some elementary results on the,
stability of nonlinear equations in order to show the previous =
transformation from C to PC can be of assistance. To keep

the notation at a minimum, the most general results are not

given.

wbiantion bbbk o i i)

Suppose F: C » Rn, G: C » R® are given continuous

functions and G(¢) depends only upon values of ¢(8) for

8 < 0; that is, for any ae R® and any sequence ¢ € c,

¢n(0) =a, n=1,2,..., which converges to ¢ uniformly on

compact subsets of [-r,0), the limit of G(¢n) exists as

n -+« and 1lim G(¢_) = G(¢). The relation
N~ n

(2.1)  IDlx,) ~ G(x)] = Lix,) + Fix,)

with D,L as in Section 1 defines a ncutral functional -differential

equation. Existence of solutions for initial data in C follows

2 from [6], [9].

The variation of constants formula (1.13) for this equation

(2.1) is
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(2.2) X - XOGCXt) = T(t)I¢-X0G(¢}}
t t
+ IOT(t-s)on(xs)ds - !O{dsT(t-s)xo]G(xs)
for t >0, ¢ € C.
Consider the map
h: C-‘rC-i-(Xo)
given by
$(8) 8 <0

hi$) (8) = ;
$(0) - H “G(¢), 6 =0

Since G(¢) does not depend on 6(0), the mapping h has a
continuous inverse, that is, h is a homeomorphism, {[8]

If z, = h(xt), U h(¢): eqguation (2.2) becomes

-t

= o(t)y + T(t—s)xe?(h.l(z ))ds
40 s

(2.3) z,

et -1
- ‘a[dsT(t.s)xﬂlG(n (z.)).

We are now in a position to prove the following theorem.

Theorem 2.1l. Suppose F(0) = 0: G(0) = 0 and the first

derivatives DF(¢j, DG(¢) are continuous and vanish at ¢ = 0.

ki

Wl



If the linear equation (1.2) is uniformly asymptotically stable,
then the system (2.1) is uniformly exponentially asymptotically %

stable.

Proof: From the hypothesis on G, the mapping h: C = C + (xo)

is a homeomorphism in a fixed neighborhood of ¢ = 0 ¢ C,

Yy =0¢C + (xo), Furthermore, there are constants kl’ k2 >0

such that in this neighborhood ¢ = h(¢) implies |¢]| < kilol.

o] < kzlwl. Applying Lemma l.l and the hypotheses on F,G,

we have there a § > 0 (as small as desired) such that 2z

« e i+ o 8

in (2.3) satisfies

|z, |

'iirmiﬁﬂ‘:]‘w*hﬁ«;ri‘ﬁu&u

t
< Ke %F|y| + JOKeaa(t_S)Skglzslds

B

as long as Izsl < ¢(6). Applying Gronwall's inequality to

IRl
G
i v PO

izt|eqt, we obtain

O

—(a-KkZG)t —(a-Kkzﬁ)t

s lzgl 5 e lv] < Kk,e lo]

UV p— v

as long as ]ztl < £(8). Since this clearly can be assured fox
all © >0 if |¢| is sufficiently small, we obtain the result
stated in the theorem.

As one sees from the above proof, the transformation from
C~C+ (XO) reduces the discussion to an argument very similar
to the rne for ordinary differential equations. One could easily

generalize the above results to obtain the more general stability




properties given by Hale and Izée [10].

Another interesting remark about the above transformation
concerns the manner in which difference equations are included
in neutral equations. Suppose F =0, L= 0 in (2.1). Then the

equation is equivalent to the functional equation (no derivatives)
(2.4) D(x.) = G(x.) = D(¢) - G(¢), t>0

with Xy = ¢. The usual difference equations are homogeneous,
(2.5) D(xt) - G(xt) =0, t >0, x,=¢.

That is, the initial function ¢ satisfies

(2.6) D(¢) - G(¢) = O.

It is a well known fact that if the zero solution of the

linear homogeneous equation
(2.7) D(xt) =0

is uniformly asymptotically stable (i.e. D is stable) then the
nonhomogeneous equation (2.5) satisfies the same properties if G
satisfies the conditions of Theorem 2.l. On the other hand, .
Theorem 2.1 does not imply the result since the homogeneous

linear equation

b i,
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“d
d-—t'D(X

t)

is not uniformly asymptotically stable as a consequence of the
fact D(¢) Z0 for all ¢ € C. The question is the following:
How can we use the theory of neutral equations to obtain the
above stability theorem for the functional equation (2.5)?

iet us now show how the transformation h: C -+ C + (XO)

solves this problem. Let

(2.8) PCy = {¥ e C + (X5): D(y) = 0}.

Using Laplace transform and the same type of arguments as in

Henry [11], one can prove the following

Lemma 2.1. If D is stable, then there are positive constants

K,a such that if x(y) is the solution of

D(xt) = 0, t >0, Xg =9 eC+ (xo)

then

lx() () | < ke™Fly| & 2 0.
Now consider the equation
q ID(x,) - G(x)] =9
at t t *




e L e e e

The variation of constants formula implies

t

Xg8xg) = T(8) [9-X,6($)1 = [

0[dsT(t-s)XO]G(xs).

= h(xt), ¥ = h(¢), then, a direct evaluation yields
D(§) = D[$=X,G($)] = D() ~ G(9).

If we assume ¢ satisfies (2.6), then D(y) = 0 and

|T(t)y| < Klwle-at by Lemma 2.1l. The kernel in the integral
above also has an exponential bound of the same type since
T(t)X0 satisfies D(T(t)XO) = I and we are only interested
in the wvariation of T(t)xo. Consequently, the stability
results for equation (2.5) is easily obtained exactly as in the

proof of Theorem 2.1 after we have made the above elementary

observations about PCO.

These observations about functional equations are the
motivation for the discussion of the mixed differential and

difference equations of the next section.

3. A Special Equation

In this section, we consider the system

a) x(t) = Ax(t) + By(t-r)

b) y(t) - E'x(t) - Jy(t-r) =0

© ol R R Do e S

rboe®

e d o




AT i

R R M

13

where x,y are k,m vectors, respectively, all matrices are

constants, E' is the transpose of E. For any a ¢ Rk, $ £ C,

one can define a solution of (3.1) with initial value x(0)

= Ei'
Y, = ¢. If we define C = c([-r,0],R™),
Dl ! kxm
(3.2) D= :t R xC=+R
D,
D,(a,9) = a
Dz(a,¢) = ¢(0) - E'a - J¢(-x)
and
I
(3.3) L = : RS x ¢+ gRFO®
0
then equation (3.1) is a special case of the NFDE
d
(3.4) ac D(x(t),Yt) = L(x(t),yt)
and one obtains the equation (3.1l) by requiring that
(3.5) Dz(a,¢) = 0.
Observe that D(a,¢) = HP(0) ~ My (-r) where

it

A

Vi
st
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ottt 40 S s 3130 Va0 e e




Hence, if we assume the eigenvalues of the matrix J have
modulli less than 1, then D is stable.

The characteristic equation of (3.1) is

AI-A  -Be AT

det A(A) = 0, AQXA) =

~E! 1-Je AE

Equation (3.4) generates a semigroup T(t) on R x C. If

we define

(Rk X C)0 = {(a,¢) ¢ Rk X C: Dz(a,¢) = 0}

then (Rk X C)0 can be considered as a Banach space. Further-

more, for any (a,¢) € (Rk X C)O, the solution of (3.4) though

(a,¢) will be in (Rk P C)o since it corresponds to the

solution of (3.1) through (a,¢). Consequently,

) 2 e (RS x ), » (RS x ¢
T,.(t = T(t : R x C > (R-x C

and is a strongly continuous semigroup. The infinitesimal

generator be of To(t) is Jﬂb = &%](Rk X C)0 where of

is the infinitesimal generator of T(t). One can easily show that

N
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(3.6) O(be) = {A e C: det A(]) 0}

The fundamental matrix solution X(t) of (3.4) is defined

by

I 0 -1
xo(e) = =H™, 6 0, xo(e) =0, -r < 6 < 0.

If

12

22

where Xll is a k x k matrix, etc, then X must be a solu-
tion of (3.4) with the initial data specified above. Therefore,

the matrices xij must automatically satisfy

v
]

(3.7) DZ(Xll(t)'X21,t) = 0, t

v
o
.

(3.8) Dz(xlz(t)'xzz,t) = I, t

Notice that (3.7) implies xll,x21 are solutions of (3.1).
The functions Xlz,x22 do not sati-~fy the equation (3.1b), but
a nonhomogeneous version of it. However, it is important to

notice that if these functions were differentiable, the derivatives




would satisfy (3.1b). This is an important remark since it

essentially implies-that the variation of X(t) satisfies (3.1).

Now we consider the nonhomogeneous system

(3.9) x(t) = Ax(t) + by(t-r) + £(t)

y(t) - E'x(t) = Jy(t-r) - g(t) =0

where £,g9 are continucus functions from [0,») to RF,RW,

respectively. If

then the equation (3.9) is a special case of the NFDE
(3.10) d D),y - 6(8)] = L(x(t),y,) + F(t)

with D,L defined as in (3.2), (3.3) respectively. One obtains

the equation (3.9) from (3.10) by requring that
(3.11) D,(a,9) = g(0)
If we let W = col(x(t),yt), y = col(a,¢), then the

general solution of (3.10) is given by the variation of constants

formula

st b A e Bt
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(3.12) we - X G(t) = T(t)y ~ X,G(0)

t [t
+ foxt_sF(s)ds - Jo[dSX(t—s)]G(s).

As in Section 2, we extend the definition of T(t) to

k
R" x C + (Xo) def y.  Then (3.12) can be written as

t

(3.13) We T XOG(t) = T(t)[w-xoG(O)] + f T(t-S)XOF(s)dS

0

t
= Jo{dsT(t—s)XolG(S).

An element of the space Y can be represented as (a,9),
¢ = (¢.b) where, a ¢ Rk, b ¢ RV, ¢ € C. Let

¥, = {(a,9) e ¥: D,(a,$) = 0}.

The analogue of Lemma 2.1 for this situation is obtained by
using Laplace transform and applying the arguments in Henry

[11] and is stated precisely as
Lemma 3.1. If the eigenvalues of J have modulii less than
one and all roots of (3.6) satisfy Re A < -§ < 0, then there

are positive constants K,q such that

X380 [r Xy 82 [0 [R50 ] < ke ™%, a.e. t >0
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i,j = 1,2, and, for any (a,$) € Yy, the solution x(a,$) of

the equation (3.1) satisfies

[x(a,5) (€)] < ke Y| (a,§], t> o.

As a first application of the previous results, let us
consider the stability of the solution (x(t),yt) = 0 of the

equation

(3.14)

S& D(x(t),y,) = Glx(t),y )] = Lix(t),y,) + Flx(t),y,)

0

£(a,9)
G(a,$) = r F(a,9) 0

g(a,$)
where £,g are continuous functions with

(3.15) £(0,0) = 0, 0

"

y(0,0)

l£@) -~ £ < u@ |y = ¥
lg) - g | 2 u@ ]y - 9]

for |y}, lwll < 6, where p(o) is a continuous nondecreasing
function such that u(c) - 0 as ¢ =+ 0.

If Dz(a,¢) = g(a,¢) then the corresponding solution of

»
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(3.14) satisfies

(3.16) x(t)

Ax(t) + By(t-r) + £(x(t),¥,)

y(£) = B'x(t) + Jy(t-r) + £(x(£),y,).

Theorem 3.l. If D is stable and there is a 6 > 0 such that

all solutions of (3.6) satisfy Re A < -§ then the zero solution

of (3.16) is uniformly asymptotically stable.
Proof: The variation of constants formula (3.13) is

t
W, = XOG(wt) = T(t) [tp—XoG(\p)] + J{0‘2[‘(1:--5)}(0}? (ws)ds

t
- Jo[dsT(t-s)XO]G(ws)

where, W, = col(x(t),yt), Py = col(a,$). If we let

z, =W, - xoG(wt)' E =9 - xos(w)
then we have defined the transformation h: kam x C=~>Y,
h(y) = £, which is a homeomorphism. Hence, there are constants
kysky > 0 such that [g] < k||, [v] <k, l&] for [E],]|v]

sufficiently small. Also,

D(E) = DY) - G(y) =0
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since equation (3.16) is satisfied. Since F = col(f,0), only

AT SR

the col(xll,le) of X is used to evaluate T(t—s)XOF(ws).

Therefore, we may apply Lemma 3.1 and the same arguments as

T
o s et o

in the proof of Theorem 2.1 to complete the proof of the theorem.

b

It is obvious that one could generalize the results in

this section in many ways. The perturbations g,f could depend

o] i e ol il i N ] il e,

upon t as long as all estimates are uniform in t. Also,
and more importantly, the linear equation can be much more

general. In fact, we could have considered an equation of the

form

o

D(x(t),y,) = Lx(t),y.)

Q

t

L
where L = [01}: Rk X C » kam is an arbitrary continuous linear

functional and
a
D(a,$) = H - dl(¢)
$(0)
where H is a (kxm) x (kxm) nonsingular matrix and

0
a, (4) =J [du (0) 1 (6)

-X

with u an m x m matrix of bounded variation with u(0) = u(0).

This means the results apply to the more general equation
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x(t) = Ly (x(t),y,) + £(x(t),y,)

where

D(a,¢) = col(a,Dz(a,¢)).

These same remarks apply equally as well to the results

in latter sections.

4. Absolute Stability

Let D,L be as in section 3; let h > 0 be given and

let £: R + R be a given continuous function satisfying

(4.1) hyo® < of(o) < hyo?, 0 <hy < h, <h.

k

Let ¢ be a k~dimensional row vector, bl € R, b2 e R®

be constant vectors and consider the system

(4.2) x(t) = L, (x(t),y,) + byf(o(t))
D, (x(t) ,y,) = byf(a(t))

g = CX.

Our objective is to apply the method of Popov to determine
sufficient conditions for the absolute stability of system (4.2).

The variation of constants formula implies the solution of (4.2)

Ut

s oo bl wmm»w}nm tﬂs}‘.ﬂi\“bm

ot bt g gt s

I

ottt ol b s

2y b e el
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Rxxm

through ¢ = (a,¢) € x C satisfies the equation

ft

(4.3) W, -~ XOG(G(t)) = T(t)i?-XOG(U(O))] + J T(t—s)on(o(s))ds

0

t
- Jo[dST(t—s)XO}G(o(s))

where w,_ = ébl(x(t).yt), G = col(0,b,f), F = col(b,£,0) and
g = CX.
As in the previous sections, let us simplify the formula

(4.3) by putting

(4.4) z, = wt - XOG(cx(t}).

If we let z, = (u(t),vt) then (4.4) is equivalent to

x{t)

(4.5) u(t)

Ve = Ye T X35 0 P

f(cx(t))
orx

(4.8) u(t) = x(t)

I

v, (0) =y _(0) - byf(cx(t))

Equation (4.3) for z, becomes

i A0

o st i o e 00 0 0
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t
T(t-S)XOF(O‘(S))ds - I
0

t
(4.7) 2, = T(t)z0 o+ I

. [dsT(t-s)XO]G(G(s))

since oft) = cx(t) = cu(t).

For the following discussion, it is convenient to have this
equation (4.7) explicitly in kam

. It is easily seen that (4.7)
is equivalent to the equations

r...

a) u(t) = ud(t) + X, (E=8)b £ (0 (s))ds -

t O

[dgX, , (=511, (0 (5))
(4.8)

o

rf

0le(t-s)blf(o(s))ds

o

-

|

| f

b) v(t) = vO(t) + [
J

O[dsxzz(t--s)]bzf(cr(s)).

By Lemma 3.1, we know that if D is stable and there is

§ > 0 such that Re A ¢ =6 for all A e o(%f) then T(t)z,,
s 0 0 h * »

that is, u (t),v (t), and Xll(t),le(t),xij(t), i,j =1,2

approach zero exponentially as t -+ ¢

Consider (4.8a). As o(t) = cx(t) =

cu(t), we have

t
o(t) = cuo(t) + f cX,, (t=s)b;f(0(s))ds
0

t »
v [ ory,

. lé(t-s)bzf(c(s))ds.

et cu®(t) = y(t), X g (t)by = ky; (£}, cX;,(E)b, = k;,(t).

| L
u ﬁ;‘c»"‘«ﬁw\du ottt el
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§ Then E
: t t, §
' (4.9) o(t) = y(t) + fokll(t—s)f(c(s))ds + f ki, (t=s)£(0(s))ds 3
: 0

e 10 ot o

Notice that y(t), ddét) P kll(t), klz(t) tend to zero
exponentially as t -+ o,

Now, define

H
] f(o(t)), O0s<t<r
£n(t) =
0 ’ t>r
o(t), Jstgr é
op(t) = ;-
0, t>T E
-
Y(t), 0O<stx<er
Yo () = 9
T T,
fokll(t—s)f(c(s))ds + joklz(ths)f(o(s))ds, £t >0 :
4
Thus H

t

t -
(4.10) GT(t) - YT(t) = jokll(t-s)fT(c)ds + f klz(t-S)fT(O)ds.
0

Let " : =




i

oy
(4.11) x (1) = jo{o(t) -~y () - L £(o ()
{
+ q[§g§t> - g%ét)l}f(o(t))dt
® dog dy}
S SO O
—Jo 9 " Yp " & fp tdlgg " a)p fOF
= L 1

where ™ denotes the Fourier transform and £' is the transpose

of £. From (4.10), by the convolution theorem, we have

Hence, (4.1l) becomes

_1 (7 i0q) (K, - +iuk 5y £,
X(T) = 3= J_W{Re[(l+1”q’(k11+lwk12’] = B [Epl -

If the condition Rel(l+iwq) (ky;+iwk;,)] - % < 0 is fulfilied,

then X(T) < 0. This means that
o) =L e +q 2Ol £ieae
T dv (&)
< [ qvee + a SHEL eo(enar.

From here the proof further continues as in Halanay's book,

Chapter 4, Section 4.6, and we obtain 1lim ¢g(t) = 0 and
£t

- - c —_ = = . S e ek Tme e L s e

«©
o J_mRe{[cT =~ Yp ~ F Ip t qlwlop - vp) }Efdw

.
e e s

e
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lim £(o(t) = 0.

b ol )

This implies, by (4.8a), that
lim u(t) = lim x(t) = 0,

£t

From (4.8b) it follows that
o0
lim v(t) = 0, since 1lim f(o(t)) = 0. Hence 1lim y(t) = 0.
£t £+ £+
Thus, the following theorem is proved:

Theorem 4.1. If D

is stable, all roots of (3.6) satisfy
Re A £ =§ < 0 and there is a q > 0 such that

™~

Re [(1+iwg) (kq,+iw

~ 1
12!l "0

where kll = cxllbl’ kl2 = Cx12b2’ then the system (4.2) is

absolutely stable for every function £ satisfying (4.1).

Rasvan [12] has studied the same problem. He gives the
condition on q in terms of the transfer function n(iw).
If we compute kll + 1wR12 we see that

n{iw) = kll + iwk12 .

One could easily study the first critical case using the

same arguments as in Halanay [7] and Datko [3].
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